I=∫1√2x2+3x+8dx=1√2∫1√x2+32x+4dx=1√2∫1√x2+2×34x+916+4−916dx=1√2∫1√(x+34)2+5516dx=1√2∫1√(x+34)2+(√554)2dxlet x+34=u
dx=du
so I=1√2∫1√u2+(√554)2du=1√2ln[u+√u2+(√554)2]+c
putting u=x+34
I=1√2ln[x+34+√(x+34)2+(√554)2]+c=1√2ln[x+34+√x2+32x+916+5516]+c=1√2ln[x+34+√x2+32x+4]+c