∫[logx(1+logx)2]dx
let logx=t
=>x=et
dx=etdt
now put the value of t from equation (i) we get,
∫t(1+t)2×etdt
addition and subtraction from 1
∫[t+1−1(1+t)2×et]dt
∫[11+t]−1(1+t)2]dt
we know that,
f(x)+f′(x)dx=f(x)ex+c
=>et1+t+c
put the value of t anf et,we get
=>x1+logx+c