Consider the given function:
I=∫√a+xa+xdx
=∫√(a+x)(a+x)(a+x)(a+x)dx
=∫(a+x)√a2−x2dx
=∫a√a2−x2dx+∫x√a2−x2dx
=asin−1xa+(12)∫−2x√a2−x2dx
leta2−x2=t2
−2xdx=2tdx
=asin−1xa−12∫2ttdx
=asin−1x2−12∫1dt
=asin−1x2−t
=asin−1x2−√a2−x2+c
Hence this is the answer.