The correct option is A Both I and II are true
∣∣∣z1−z2z1−z2∣∣∣=1
Dividing by z2
∣∣∣z1/z2−1z1/z2+1∣∣∣=1
Let z1/z2 be a complex number u=x+iy
⇒∣∣∣u−1u+1∣∣∣=1
⇒|u−1|2=|u+1|2
⇒(x−1)2+y2=(x+1)2+y2
∴(x−1)2=(x+1)2
Which is possible only if x=0
∴u=iy ( purely imaginary)
ii) If z is purely real, then z=x (imaginary part zero)
Hence ¯z is also equal to x.
⇒z=¯z