wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

I : lf A+B+C=180, then cos2A+cos2B+cos2C=14cosAcosBcosC
II: If A+B+C=0, then cosA+cosB+cosC=1+4cosA2cosB2cosC2

A
only I is true
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
only II is true
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
Both I and II are true
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Neither I nor II are true
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A only II is true
I: As A+B+C=πC=π(A+B)
cos2A+cos2B+cos2C
=2cos(A+B)cos(AB)+cos(2π2(A+B))
=2cos(A+B)cos(AB)+cos2(A+B)
=2cos(A+B)cos(AB)+2cos2(A+B)1
Again using A+B+C=πA+B2=π2C2
We get
cos2A+cos2B+cos2C=2cos(π2C)(cos(AB)+cos(A+B))+1
=2sin(C)(cosAcosB)
=4cosAcosBsinC+1
II: As A+B+C=πC=π(A+B)
cosA+cosB+cosC
=2cosA+B2cosAB2+cos((A+B))
=2cosA+B2cosAB2+2cos2A+B21
=2cosA+B2(cosAB2+cosA+B2)1
Again using A+B+C=0(A+B)2=C2
We get
cosA+cosB+cosC
=2cos(C2)(2cosA2cosB2)1
=1+4cosA2cosB2cosC2
Hence I is incorrect and II is correct.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Some Fundamental Concepts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon