wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

I: lf A+B+C=180, then sin2A+sin2B+sin2C=2(1+cosAcosBcosC)
II : lf A+B+C=180, then cos2A+cos2B+cos2C=12cosAcosBcosC

A
only I is true
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
only II is true
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Both I and II are true
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
Neither I nor II are true
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B Both I and II are true
P=sin2A+sin2B+sin2C
=3(cos2A+cos2B+cos2C)
Using cos2x=2cos2x1cos2x=cos2x+12
We get
P=312(cos2A+cos2B+cos2C3)
=312(cos2A+cos2B+cos2C3)
Now from A+B+C=1802C=3602(A+B)
P=312(2cos(A+B)cos(AB)+cos(3602(A+B))3)
=312(2cos(A+B)cos(AB)+cos2(A+B)3)
=312(2cos(A+B)(cos(AB)+cos(A+B))4)
=312(2cos(180C)(2cosAcosB)4)
=2cosAcosBcosC+1
II: Using cos2x=2cos2x1cos2x=cos2x+12
cos2A+cos2B+cos2C
=12(cos2A+cos2B+cos2C+3)
A+B+C=1802C=3602(A+B)
=12(2cos(A+B)cos(AB)+cos(3602(A+B))+3)
=12(2cos(A+B)cos(AB)+cos2(A+B)+3)
=12(2cos(A+B)cos(AB)+2cos2(A+B)1+3)
=12(2cos(A+B)(cos(AB)+cos(A+B))+2)
=12(2cos(180C)(2cosAcosB)+2)
=2cosAcosBcosC+1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon