The correct option is
B Both I and II are true
P=sin2A+sin2B+sin2C
=3−(cos2A+cos2B+cos2C)
Using cos2x=2cos2x−1⇒cos2x=cos2x+12
We get
P=3−12(cos2A+cos2B+cos2C−3)
=3−12(cos2A+cos2B+cos2C−3)
Now from A+B+C=180⇒2C=360−2(A+B)
P=3−12(2cos(A+B)cos(A−B)+cos(360−2(A+B))−3)
=3−12(2cos(A+B)cos(A−B)+cos2(A+B)−3)
=3−12(2cos(A+B)(cos(A−B)+cos(A+B))−4)
=3−12(2cos(180−C)(2cosAcosB)−4)
=2cosAcosBcosC+1
II: Using cos2x=2cos2x−1⇒cos2x=cos2x+12
cos2A+cos2B+cos2C
=12(cos2A+cos2B+cos2C+3)
A+B+C=180⇒2C=360−2(A+B)
=12(2cos(A+B)cos(A−B)+cos(360−2(A+B))+3)
=12(2cos(A+B)cos(A−B)+cos2(A+B)+3)
=12(2cos(A+B)cos(A−B)+2cos2(A+B)−1+3)
=12(2cos(A+B)(cos(A−B)+cos(A+B))+2)
=12(2cos(180−C)(2cosAcosB)+2)
=−2cosAcosBcosC+1