i+i2+i3+i4+....+i100 equals:
-1
0
1
None
Evaluating the given series
i+i2+i3+i4+....+i100
The power of i follows a cyclicity of 4.
Checking up to four powers:
⇒i+i2+i3+i4⇒i-1-i+1⇒0
Therefore,
⇒i+i2+i3+i4+....+i100⇒i+i2+i3+i4[upto25times∵1004=25]⇒0
Hence, the correct answer is Option (B).
The value of i + i2 + i3 + i4 is __