The correct option is A 1√1−a2<sin−1b−sin−1ab−a<1√1−b2
Let f(x)=sin−1x,x∈[a,b]
Let f(x) be continuous on [a,b] and differentiable on (a,b).
By LMVT, there exist at least one c∈(a,b)
f′(c)=f(b)−f(a)b−a
⇒1√1−c2=sin−1b−sin−1ab−a,c∈(a,b)
⇒a<c<b
⇒a2<c2<b2
⇒−b2<−c2<−a2
⇒1−b2<1−c2<1−a2
⇒√1−b2<√1−c2<√1−a2
⇒1√1−a2<1√1−c2<1√1−b2
∴1√1−a2<sin−1b−sin−1ab−a<1√1−b2