If 0<a<b, then limn→∞ limn→∞[(an+bn)an-bn]=
0
-1
1
Doesnotexist
Explanation for the correct option:
Finding limit
limn→∞(an+bn)(an-bn)=limn→∞(ab)n+1(ab)n-1,ab<1⇒(ab)n=0=0+10-1=-1
Hence, the correct option is option (B).
If 0 < a < b,then limn→∞(bn+an)1/n is equal to