If 0≤x≤2π, 0≤y≤2π and sinx+siny=2, then the value of x+y is :
Given:
x,y∈[0,2π]
sinx+siny=2
We know that,
−1≤sinx≤1
−1≤siny≤1
Add both the above expressions.
−2≤sinx+siny≤2
Therefore, if
sinx+siny=2
⇒sinx=1
⇒siny=1
Therefore,
⇒x=π2 and ⇒y=π2
Therefore,
x+y=π2+π2=π
Hence, this is the required result.