The correct options are
A b−a1+b2<tan−1b−tan−1a<b−a1+a2
B 825<tan−1819<817
C If log(1+x)=x1+ax, then x1+x<log(1+x)<x, ∀ x>0
Let f(x)=tan−1x⇒f′(x)=11+x2
By using mean value theorem
tan−1b−tan−1ab−a=11+c2; (a<c<b)
∵a<c<b
∴1+a2<1+c2<1+b2
⇒11+b2<11+c2<11+a2
⇒11+b2<tan−1b−tan−1ab−a<11+a2
⇒b−a1+b2<tan−1b−tan−1a<b−a1+a2
Put a=14, b=34, we get
⇒241+916<tan−1⎛⎜
⎜
⎜⎝34−141+34×14⎞⎟
⎟
⎟⎠<241+116
⇒825<tan−1819<817
If log(1+x)=x1+ax
0<a<1∴0<ax<x ∀ x>0
⇒1<1+ax<1+x
⇒1>11+ax>11+x
⇒x>x1+ax>x1+x
⇒x1+x<log(1+x)<x, ∀ x>0