The correct option is A The same straight line 𝑢
Given: u=a1x+b1y+c1=0,v=a2x+b2y+c2=0
a1a2=b1b2=c1c2=m (say)
a1=ma2,b1=mb2,c1=mc2
Now,
𝑢+𝑘𝑣=0
∴a1x+b1y+c1+k(a2x+b2y+c2)=0
∴x(a1+ka2)+y(b1+kb2)+c1+kc2=0
∴(m+k)[a2x+b2y+c2]=0
∴a2x+b2y+c2=0 [∵m+k≠0]
∴1m(a1x+b1y+c1)=0
∴a1x+b1y+c1=0
Hence, the curve u+kv=0 is same as straight line 𝑢.