If 1,2,3 and 4 are the roots of the equation x4+ax3+bx2+cx+d=0, then a+2b+c=
The correct option is C (10)
As 1,2,3,4 are roots of x4+ax3+bx2+cx+d=0
Gives S1=sum of roots=−coefficient of~x3coefficient of x4=1+2+3+4=−a
⇒a=−10
Similar way, S2=1⋅2+1⋅3+1⋅4+2⋅3+2⋅4+3⋅4=b⇒b=35S3=1⋅2⋅3+1⋅2⋅4+2⋅3⋅4+3⋅4⋅1=−c⇒c=−50
Therefore, a+2b+c=−10+2(35)−50=−10+70−50=10