The correct option is A 199100
1+3log10√2+x+4log10√2−x=3log10√4−x2
For the log function to be defined, we get
2+x>0x>−2 ...(1)2−x>0x<2 ...(2)4−x2>0x2<4⇒x∈(−2,2) ...(3)
From equation (1),(2) and (3), we get
x∈(−2,2)
1+3log10√2+x+4log10√2−x=3log10√4−x2⇒1+3log10√2+x+4log10√2−x=3log10√2−x+3log10√2+x⇒1+log10√2−x=0⇒log10√2−x=−1⇒√2−x=110⇒2−x=1100⇒x=199100