IF 1+4+7+⋯+x=287, find the value of x.
Sn=n2[2a+(n−1)d]Given a=1,d=4−1=3,Sn=287287=n2(2×1+(n−1)3)287×2=n(2+3n−3)574=2n+3n2−3n3n2−n−574=0
On solving the quadratic equation using formula n=−b±√b2−4ac2a=−(−1)±√(−1)2−4(3)(−574)2×3=1±√68896=1±836=1+836 or 1−836=846 or −826=14 or −413
we get n = 14, −413
n can't be −413 because n is a positive number.
n=14Sn=n2[a+l]287=142(1+x)574=14(1+x)57414=1+x41=1+xSo,x=41−1x=40