The correct option is C n+1
Let S=1.3+3.32+5.33+7.34+...+(2n−1)3n→(1)
Multiplying (1) by 3, we get
3S=1.32+3.33+5.34+7.35+...+(2n−3)3n+(2n−1)3n+1→(2)
Subtracting (1) and (2) by shifting the terms, we get
−2S=1.3+2(32+33+34+....+3n)−(2n−1)3n+1
⇒−2S=3+2[32(3n−1−1)3−1]−(2n−1)3n+1 [ sum of G.P series]
⇒−2S=−6+23n+1−2n3n+1
⇒S=3+(n−1)3n+1
Therefore, t=n+1
Hence, option D.