If 1≤r≤n then nn−1Cr−1 is equal to .........
nn−1Cr−1=n(n−1)!n−1−(r−1)!(r−1)!
nn−1Cr−1=(n)!(n−1)!(r−1)!
nn−1Cr−1=(n−r+1)n!(n−r+1)(n−r)!(r−1)!
Since, all the options having nCr−1,
Simplify the expression to get nCr−1 in the expression
nn−1Cr−1=(n−r+1){n!(n−r+1)!(r−1)!}
nn−1Cr−1=(n−r+1){n!{n−(r−1)}!(r−1)!}
nn−1Cr−1=(n−r+1)nCr−1