If (1-tan2θ)sec2θ=12, then the general value of θ is
nπ±π6
nπ+π6
2nπ±π6
None of these
Explanation of the correct option:
Step-1. Calculate the value of tanθ:
Given,(1-tan2θ)sec2θ=12,
⇒(1-tan2θ)(1+tan2θ)=12[∵sec2(θ)-tan2(θ)=1⇒sec2(θ)=1+tan2(θ)]⇒2(1-tan2θ)=1(1+tan2θ)⇒2-2tan2θ=1+tan2θ⇒2-1=2tan2θ+tan2θ⇒1=3tan2θ⇒tan2θ=13⇒tanθ=±13
Step2. Find the value of θ:
We know that
if tan(θ)=tan(α) then the general solution of θ=nπ+α,n∈Z.
We have tanθ=±13
⇒tanθ=±tanπ6∵tan(π6)=13⇒θ=nπ±π6
Hence, Option(A) is the correct answer.
{1(sec2θ−cos2θ)+1(cosec2θ−sin2θ)}(sin2θcos2θ)=1−sin2θcos2θ2+sin2θcos2θ