The correct option is A cos x
Here, the important thing to remember is that integration is the reverse process of differentiation i.e.
If
∫g(x)dx=F(x)+C
, then
dF(x)dx=g(x).
Here, let∫g(x)dx=∫(√1+sinx)f(x) dx⇒g(x)=(√1+sinx)f(x)also F(x)=23 (1+sinx)3/2+C⇒∫g(x)=F(x)⇒g(x)=dF(x)dx
Thus, substituting the function values in the above equation we get,ddx(23 (1+sinx)3/2+C)=f(x)√1+sinx ⇒23.32 (1+sinx)1/2cos x=f(x)√1+sinx ⇒(1+sinx)1/2cos x=f(x)√1+sinx ⇒cos x=f(x)