If (1+x)(1+x+x2).....(1+x+.....+xn)=a0+a1x+a2x2+a3x3+....., then the value of a0+a2+a4+..... is
(1+x)(1+x+x2).....(1+x+.....+xn)=a0+a1x+a2x2+a3x3+.....
Put, x=1,
2×3×4×....(n+1)=a0+a1+a2+a3+......
0=a0−a1+a2−a3+.....
Put x=−1,
(n+1)!=2[a0+a2+....]⇒a0+a2+....=(n+1)!2