If (1+x+2x2)20=a0+a1+a2x2+...+a40x40, then a1+a3+a5+...+a37 equals :
219(220-21)
(1+x+2x2)20=a0+a1x+a2x2+....+a40x40
x = 1 , x = -1 gives
a0+a1+a2+...+a40=420
a0+a1+a2+...+a40=420
⇒ a1+a3+a5+....+a39=(420−220)
⇒ a1+a3+....+a37=219(220−1)−a39.
Now, a39 = coeff. of x39 in [1 + x(1 + 2x^2 )]^{20} \)
= coeff. of x39 in [1 + x(1 + 2x )]^{20} \)
= coeff. of x39 in 20C20.x20(1+2x)20.
= coeff. of x19in(1+2x)20
= 20C19219=20×219
Hence , a1+a3+....+a37=219(220−1)−20×219
= 219(220−21) .