If (1+x+2x2)20=a0+a1x+a2x2.....a40x40, then a0+a2+a4....a38 =
Put x = 1,
⇒ (1+1+2)20=a0+a1+a2+a3+a4...............a40 ----------------(1)
Put x = -1
⇒ (1−1+2)20=a0+a1+a2+a3+a4...............a40 ----------------(2)
(1) + (2) ⇒420+220 = 2[a0+a2+a4.................a38+a40]
⇒(a0+a2+a4...............a38+a40) = 240+2202 = 239+219
a40 is the coefficient of x40. It will be 220, because the last term in the expansion will be 220(x2)20.
⇒(a0+a2+a4...............a38=239+219−220
= 219(220+1−2)
= 219(220−1)