We have,
(1+x+2x2)20=a0+a1x+a2x2+a3x3+.........+a40x40
Let, put qx=1 and we get,
(1+1+2(1)2)20=a0+a1+a2+a3+........+a40
420=a0+a1+a2+a3+........+a40......(1)
Again, put
x=−1 and we get,
(1−1+2(1)2)20=a0−a1+a2−a3+........+a40
220=a0−a1+a2−a3+........+a40......(2)
On subtracting equation (1) and (2) to, we get,
420−220=2(a1+a3+a5+.......+a39)
⇒(a1+a3+a5+.......+a39)=420−2202
⇒(a1+a3+a5+.......+a39)=220(220−1)2
⇒(a1+a3+a5+.......+a39)=219(220−1)
Hence, this is the answer.