If (1+x)n=C0+C1x+C2x2+.....Cnxn, then C0+C4+C8........=
We have,
(1+x)n=C0+C1x+C2x2+C3x3+C4x4+........+Cnxn ……… (1)
On putting x=1 in equation (1), we get
2n=C0+C1+C2+C3+C4+........+Cn ……… (2)
On putting x=−1 in equation (1), we get
0=C0−C1+C2−C3+C4−........ ……… (3)
On adding equation (2) and (3), we get
2n=2C0+2C2+2C4+........
2n−1=C0+C2+C4+C6+........ …….. (4)
On putting x=i in equation (1), we get
(1+i)n=C0+C1i+C2i2+C3i3+C4i4+........
(1+i)n=C0+C1i−C2−C3i+C4+........ ……. (5)
On putting x=−i in equation (1), we get
(1−i)n=C0−C1i+C2(−i)2+C3(−i)3+C4(−i)4+........
(1−i)n=C0−C1i−C2+C3i+C4+........ …….. (6)
On adding equation (5) and (6), we get
(1+i)n+(1−i)n=2(C0−C2+C4−C6+C8−........)
(1+i)n+(1−i)n2=C0−C2+C4−C6+C8−....... …….. (7)
On adding equation (4) and (7), we get
(1+i)n+(1−i)n2+2n−1=2C0+2C4+2C8........
(1+i)n+(1−i)n+2n2=2C0+2C4+2C8........
C0+C4+C8........=(1+i)n+(1−i)n+2n4
Hence, this is the answer.