wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (1+x)n=C0+C1x+C2x2+....+Cnxn then show that the sum of the products of the Cis taken two at a time, represented by CiCj0i<jn is equal to 22n12n!2(n!)2.

Open in App
Solution

We know:
(1+x)n=C0+C1x+C2x2+....+Cnxn ...... (1)
Also,
(x+1)n=C0xn+C1xn1+....+Cn1x+Cn ...... (2)

Multiplying eq(1) and eq(2):
(1+x)2n=C20xn+C21xn+C22xn+....+C2nxn+..... ...... (3)

Co-eff of xn on both sides:
2nCn=C20+C21+C22+....+C2n ..... (4)

Putting x=1 in eq (3)
22n=C0(C0+C1+...+Cn)+C1(C0+C1+...+Cn)+.....

22n=(C20+C21+C22+....+C2n)+20i<jnCiCj

22n=2nCn+20i<jnCiCj .............. [From eq (4)]

22n(2n)!n!n!=20i<jnCiCj

0i<jnCiCj=22n1(2n)!2(n!)2

(Hence Proved)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon