We know:
(1+x)n=C0+C1x+C2x2+....+Cnxn ...... (1)
Also,
(x+1)n=C0xn+C1xn−1+....+Cn−1x+Cn ...... (2)
Multiplying eq(1) and eq(2):
(1+x)2n=C20xn+C21xn+C22xn+....+C2nxn+..... ...... (3)
∴ Co-eff of xn on both sides:
2nCn=C20+C21+C22+....+C2n ..... (4)
Putting x=1 in eq (3)
⇒22n=C0(C0+C1+...+Cn)+C1(C0+C1+...+Cn)+.....
⇒22n=(C20+C21+C22+....+C2n)+2∑∑0≤i<j≤nCiCj
⇒22n=2nCn+2∑∑0≤i<j≤nCiCj .............. [From eq (4)]
⇒22n−(2n)!n!n!=2∑∑0≤i<j≤nCiCj
⇒∑∑0≤i<j≤nCiCj=22n−1−(2n)!2(n!)2
(Hence Proved)