If (1+x)n=C0+C1x+C2x2+⋯+Cnxn, n∈N, then for 2≤m≤n, C0−C1+C2−⋯+[(−1)m−1]Cm−1 is equal to
If (1+x)n=C0+C1x+C2x2+.......+Cnxn, then
C1C0 + 2C2C1 + 3C3C2 + ........+ nCnCn−1 =