The correct option is B 12(910−a20)
Given
(1+x+x2)20=40∑r=0arxr ⋯(1)
Now, replacing x by 1x, we get
(1+1x+1x2)20=40∑r=0ar(1x)r⇒(1+x+x2)20=40∑r=0arx40−r ⋯(2)
Comparing equation (1) and (2), we get
a0=a40a1=a39
So, ar=a40−r
Putting x=1 in equation (1), we get
320=a0+a1+a2+⋯+a40⇒320=(a0+a1+a2+⋯+a19)+a20 +(a21+a22+a23+⋯+a40)⇒320=2(a0+a1+a2+⋯+a19)+a20(∵ar=a40−r)∴a0+a1+a2+⋯++a19=12(910−a20)