If (1+x+x2)n=a0+a1x+a2x+....+a2nx2n, then the value of a0+a3+a6+.=
We have,
(1+x+x2)n=a0+a1x+a2x2+a3x3+...+a2nx2n
Now, put x=1 and we get,
(1+1+1)n=a0+a1+a2+a3+...+a2n
[(a0+a3+a6+.....)+(a1+a4+a5+.....)+(a2+a5+a8+....)]=3n.......(1)
Put x=ω
And we get,
(1+ω+ω2)n=a0+a1ω+a2ω2+....+anω2n(∴1+ω+ω2=0)
0=(a0+a3+a6+...)+(a1+a4+...)ω+(a2+a5+...)ω2......(2)
Finally putting x=ω2 and we get,
(1+ω2+ω4)n=a0+a1ω2+a2ω4+a3ω6+a4ω8+.....+a2n(ω2)2n
0=(a0+a3+a6+...)+(a1+a4+....)ω2+(a2+a5+...)ω.......(3)
Now,
Adding equation (1)+(2) and (3) to and we get,
3n=3(a0+a3+a6+...)+(a1+a4+...)(1+ω+ω2)+(a2+a5+...)(1+ω+ω2)
3n=3(a0+a3+a6+...)+0+0
⇒a0+a3+a6+...=3n3=3n−1
Hence, this is the
answer.