We know that, sum of roots =−ba ∴13−z1+13−z2+13−z3+...+13−zn−1=1+2⋅3+3⋅32+4⋅33+...+(n−1)3n−21+3+32+...+3n−1 =n−1∑r=1r⋅3r−1n∑r=13r−1
Let S=n−1∑r=1r⋅3r−1 S=1+2⋅3+3⋅32+4⋅33+...+(n−1)3n−2 3S=3+2⋅32+3⋅33+...+(n−2)3n−2+(n−1)3n−1 Subtracting above equations, we get −2S=3n−1−12−(n−1)3n−1 ⇒S=n⋅3n−12−3n−14