If (10)9+2(11)1(10)8+3(11)2(10)7+...+10(11)9=k(10)9, then k is equals to:
100
We have,
(10)9+2(11)1(10)8+3(11)2(10)7+...+10(11)9−k(10)9
Dividing by (10)9 on both sides, we get
1+2(1110)+3(1110)2+...+10(1110)9=k ...(i)
Multiplying (1110)on both sides of above equation we get,
(1110)+2(1110)2+3(1110)3+...+10(1110)10−(1110)k ...(ii)
Subtracting (ii) from (i), we get
k−(1110)k−1+(1110)+(1110)2+...+(1110)9−10(1110)10
⇒k(1−(1110))=1((1110)10−1)(1110)−1−10(1110)10
⇒k(1−(1110))=−10
⇒k=100