If 2log3x−4logx27≤5(x>1), then the number of integral values of x is
Open in App
Solution
2log3x−4logx27≤5 ⇒2log3x−4⋅3logx3≤5
Let log3x=y ⇒2y−12y≤5⇒2y2−5y−12≤0[ As x>1⇒y>0] ⇒(2y+3)(y−4)≤0⇒y∈[−32,4]
But y>0 ∴0<y≤4 ⇒0<log3x≤4⇒1<x≤81
Thus, talking about integral values of x, we get: x∈{2,3,4,5⋯,80}
Or 80 integral values of x.