If (2)m+1×25=4−2 the value of m is
Given, (2)m+1×25=4−2
⇒ (2)m+1×25=((2)2)−2 (∵(am)n=amn)
⇒ (2)m+1+5=(2)−4 (∵am×an=am+n)
Since the bases on both the sides are equal, therefore the exponents must also be equal. This means, m+1+5=−4⟹m=−10.