If (2n+1) θ=π, then 2n cos θ cos 2θ ⋯ cos 22 θ⋯ 2n−1θ=
1
(2n+1) θ=π (Given)
⇒ 2nθ+θ=π⇒ 2nθ=π−θ⇒ sin 2nθ=sin (π−θ)
⇒ sin 2nθ=sin θ . . . (1)
2n cos θ cos 2θ cos 22θ⋯cos 2n−1θ=2n×sin 2nθ2nsin θ=sin 2nθsin θ
=sin θsin θ [From (1)]
= 1