The correct option is
A sin2(a−b)−2sin(a+b)=sin(2a)+sin(2b)Given equations are
2(sina+sinb)x−2sin(a−b)y=3→(1)
and 2(cosa+cosb)x+2cos(a−b)y=5→(2)
Let the slope of the equation (1) be m1
and equation (2) be m2
m1=sina+sinbsin(a−b)→(3)
m2=−cosa+cosbcos(a−b)→(4)
Since both the lines are mutually perpendicular (m1)(m2)=−1→(5)
From (3), (4) and (5)
Using the identities, cos2α=cos2(α)−sin2(α)
sin(α+β)=sinαcosβ+cosαsinβ
We get m1m2=−1
⇒sinacosa+sinacosb+sinbcosa+sinbcosbsin(a−b)cos(a−b)=1
⇒sin(a+b)+12[sin2b+sin2a]sin(a−b)cos(a−b)=1
⇒sin(2a)+sin(2b)=2[12sin(2a−2b)−sin(a+b)]
=sin2(a−b)−2sin(a+b)
We get, sin2a+sin2b=sin2(a−b)−2sin(a+b)