If (2sinα)(1+cosα+sinα)=x, then (1-cosα+sinα)(1+sinα) is equal to
1x
x
1-x
1+x
Explanation for the correct option:
Step 1. Find the value of given expression:
Given, (2sinα)(1+cosα+sinα)=x …..(1)
Now, (1-cosα+sinα)(1+sinα)
Step 2. by rationalizing the numerator, we get
=(1-cosα+sinα)(1+sinα)×1+sinα+cosα1+sinα+cosα
=(1+sinα)2-cos2α(1+sinα)1+sinα+cosα ∵(a+b)2=a2+b2+2ab
=1+sin2α+2sinα-1-sin2α(1+sinα)1+sinα+cosα ∵sin2x+cos2x=1
=2sin2α+2sinα(1+sinα)1+sinα+cosα
=2sinα1+sinα(1+sinα)1+sinα+cosα
=2sinα1+sinα+cosα
=x [∵Fromequation1]
Hence, Option B is Correct.
If 2 sin α1+cos α+sin α=y, then 1−cos α+sin α1+sin α is equal to