If [2sinx]+[cosx]=−3 then the range of the function f(x)=sinx+√3 cosx in[0,2π] is (where [⋅] denotes greatest integer function)
(−2,−1)
[2sinx]+[cosx]=−3, only if [2sinx]=−2&[cosx]=−1
−2≤2sinx<−1 and −1≤cosx<0
−1≤sinx<−12 and −1≤cosx<0
7π6<x<11π6 and π2<x<3π2
common values of x is 7π6<x<3π2
{function is periodic so consider the interval}0≤x≤2π
For f(x)=sinx+√3 cosx=2sin(π3+x)
Now 7π6<x<3π2
3π2<π3+x<11π6−1<sin(π3+x)<−12−2<2sin(π3+x)<−1
Range is (-2,-1)