The correct option is B x∈[0,∞)∪{−2}
2|x+1|−2x=|2x−1|+1
Critical points x+1=0⇒x=−1
and
2x−1=0⇒x=0
There are three regions
x<−1, x∈[−1,0], x>0
case-1, x<−1
For x<−1, |x+1|=−(x+1), |2x−1|=−(2x−1)
Now, equation will be :
2−(x+1)−2x=−(2x−1)+1
2−(x+1)=2
−x−1=1
x=−2 Also −2<−1
So, x=−2 ⋯(1)
case-2, x∈[−1,0]
For x∈[−1,0], |x+1|=(x+1), |2x−1|=−(2x−1)
Now, equation will be :
2(x+1)−2x=−(2x−1)+1
2(x+1)=2
x+1=1
x=0 Also 0∈[−1,0]
So, x=0 ⋯(2)
case-3, x>0
For x>0, |x+1|=(x+1), |2x−1|=(2x−1)
Now, equation will be :
2(x+1)−2x=−(2x−1)+1
2(x+1)=2x+1 always true
x∈R But x>0
So, x>0 ⋯(3)
By set (1)∪(2)∪(3)
x∈[0,∞)∪{−2}