If 28C2r:24C2r−4=225:11, find r.
28!(2r)!(28−2r)!24!(2r−4)!(24−(2r−4))!=22511⇒28×27×26×25×24!(2r−4)!(28−2r)!(2r)!(28−2r)!24!=22511⇒28×27×26×252r×(2r−1)×(2r−2)(2r−3)=22511⇒28×27×26×25×1115×15=2r(2r−1)(2r−2)(2r−3)
⇒11×12×13×14=2r(2r−1)(2r−2)(2r−3)
Composing both sides r = 7.