If 2n−7×5n−4=1250 find the value of n.
Given 2n−7×5n−4=1250
⇒2n−7×5n−4=2×54 [Since,1250=2×54]
Multplying 5−3 on both sides, we get
⇒2n−7×5n−4×5−3=2×54×5−3
⇒2n−7×5n−4−3=2×54−3
⇒2n−7×5n−7=2×5
⇒(2×5)n−7=(10)1
⇒(10)n−7=101
Since, the bases are equal, so we can equate their power as
⇒n−7=1
⇒n=1+7
∴n=8
Hence, the value of n=8