If 2nC3 : nC3=11:1, find n.
We have
2nC3=2n(2n−1)(2n−2)3 !=2n(n−1)(2n−1)3
and nC3=n(n−1)(n−2)3 !=n(n−1)(n−2)6.
∴ 2nC3nC3=2n(n−1)(2n−1)3×6n(n−1)(n−2)=4(2n−1)(n−2).
Now, 2nC3nC3=111⇒4(2n−1)(n−2)=111
⇒ 8n−4=11n−22 ⇒ 3n=18 ⇒ n=6.
Hence, n=6.
Determine n if
(i) (ii)