Given:
2nC3:nC3=11:1
2nC3=2n!3!(2n−3)!
=(2n)(2n−1)(2n−2)(2n−3)!(3×2×1)(2n−3)!
=(2n)(2n−1)(2n−2)6
nC3=n!3!(n−3)!
=(n)(n−1)(n−2)(n−3)!(3×2×1)(n−3)!
=(n)(n−1)(n−2)6
The expression becomes,
(2n)(2n−1)(2n−2)6:(n)(n−1)(n−2)6=11:1
(2n)(2n−1)(2n−2)6(n)(n−1)(n−2)6=111
(2n)(2n−1)(2n−2)(n)(n−1)(n−2)=11
4(2n−1)(n−2)=11
4(2n−1)=11(n−2)
8n−4=11n−22
−4+22=11n−8n
n=6
Hence, the value of n is 6.