A] 2nP3=100×nP2
=(2n)!(2n−3)!=100×n!(n−2)!
=(2n−3)!(2n−2)(2n−1)2n(2n−3)!=100×(n−2)!(n−1)n(n−2)!
=2(2n-2)(2n-1)=100(n-1)
=2(4n2−6n+2)=100n−100
=8n2−12n+4=100n−100
=8n2−112n+104=0
=4n2−56n+52=0
=2n2−28n+26=0
==n2−14n+13=0
= n (n-13) - 1 (n-13) = 0
n = 1, n = 13
∴ n = 13 [as n=1 not possible]