The correct option is B 0
2(2x2+3y2+4z2−√6xy−2√3yz−2√2xz)=0×2
⇒4x2+6y2+8z2−2√6xy−4√3yz−4√2xz=0
⇒2x2−2√6xy+3y2+3y2−4√3yz+4z2+4z2−4√2xz+2x2=0
⇒(√2x−√3y)2+(√3y−2z)2+(2z−√2x)2=0
√2x−√3y=0⇒√2x=√3y
√3y−2z=0⇒√3y=2z
2z−√2x=0⇒2z=√2x
√2x=√3y=2z
2x2+3y2+16z2−2√6xy−8√3yz−8√2xz
(√2x=√3y=2z)
=(√2x)2+(√3y)2+16z2−2×√2x×√3y−4×√3y×2z−4×√2x×2z
=(2z)2+(2z)2+16z2−2×2z×2z−4×2z×2z−4×2z×2z
=4z2+4z2+16z2+8z2−16z2−16z2
=32z2−32z2
=0
So, the correct answer is option (b).