If (2x2−x−1)5 = a0+a1x+a2x2..............a10x10, then -(a0) =
a0 is the constant term. To get the constant term, put x = 0
⇒ (0−0−1)5=a0
⇒ a0 = -1
⇒ - (a0) = 1
If (2x2−x−1)5=a0+a1x+a2x2..........a10x10 then a2+a4+a6+a8+a10 =
If (1+x+x2)n=a0+a1x+a2x2+....+a2nx2n, then a0+a3+a6+.....=
If (1+x+2x2)20=a0+a1x+a2x2.....a40x40, then a0+a2+a4....a38 =