Let α,β,γ be the roots of
2x3+ax2+bx+4=0
As all the coefficients are positive, so all the roots will be negative
Assuming
α1=−α, α2=−β, α3=−γ
Now,
α+β+γ=−a2⇒α1+α2+α3=a2⋯(1)
αβ+βγ+αγ=b2⇒α1α2+α2α3+α3α1=b2⋯(2)
αβγ=−42⇒α1α2α3=2⋯(3)
Using
AM≥GM⇒α1+α2+α33≥(α1α2α3)1/3
From equation (1) and (3),
⇒a≥6×21/3⋯(4)
Also,
α1α2+α2α3+α1α33≥(α1α2α3)2/3
From equation (2) and (3),
⇒b≥6×22/3⇒b≥6×41/3⋯(5)
Therefore, using equation (4) and (5),
a+b≥6(21/3+41/3)
The minimum value
a+b=6(21/3+41/3)⇒m(x1/3+41/3)=6(21/3+41/3)⇒m=6,x=2∴m+x=8