The correct option is A 9
Given series is
3+14(3+P)+142(3+2P)+143(3+3P)+…
It can be written as
1⋅3+14(3+P)+142(3+2P)+143(3+3P)+…
So, the given series is AGP with a=3, r=14, d=p
For |r|<1,n→∞
S∞=a1−r+dr(1−r)2
⇒31−14+p⋅14(1−14)2=8
⇒4+4p9=8
⇒p=9
Alternate Solution:
3+14(3+P)+142(3+2P)+143(3+3P)+…=8
⇒3(1+14+142+…)+P(14+242+…)=8 …(1)
Now Let x=14+242+…
⇒x4=142+243+…
Then x−x4=14+142+143+…
⇒x=43(14+142+143+…)
From equation (1)
3(1+14+142+…)+P⋅43(14+142+143+…)=8
⇒3⋅11−14+P⋅43⋅141−14=8
⇒4+4P9=8
⇒P=9