If 3sin-12x1+x2-4cos-11-x21+x2+2tan-12x1-x2=π3, thenx=
3
13
1
None of these
Finding the value of x:
Given,3sin-12x1+x2-4cos-11-x21+x2+2tan-12x1-x2=π3
Put x=tanθ
3sin-12tanθ1+tan2θ-4cos-11-tan2θ1+tan2θ+2tan-12tanθ1-tan2θ=π3
⇒ 3sin-1(sin2θ)-4cos-1(cos2θ)+2tan-1(tan2θ)=π3
⇒ 3(2θ)-4(2θ)+2(2θ)=π3
⇒ 6θ-8θ+4θ=π3
⇒ 2θ=π3
⇒ θ=π6
⇒ tan-1x=π6
∴x=tanπ6=13
Hence, the correct answer is option (B)