(3x−1)4=a4x4+a3x3+a2x2+a1x+a0
=>(3x−1)2(3x−1)2=a4x4+a3x3+a2x2+a1x+a0
=>(9x2−6x+1)(9x2−6x+1)=a4x4+a3x3+a2x2+a1x+a0
=>(81x4−54x3+9x2−54x3−6x+9x2−6x+1)=a4x4+a3x3+a2x2+a1x+a0
=>(81x4−108x3+18x2−12x+1)=a4x4+a3x3+a2x2+a1x+a0
Thus, a4=81
a3=−108
a2=18
a1=−12
a0=1
Now,
a4+3a3+9a2+27a1+81a0
=81+3(−108)+9(18)+27(−12)+81(1)
=81−324+162−324+81
=0