Applying the formula, (a−b)2=a2+b2−2ab(3x−13x)2=3x2+(13x)2−2×3x×13x=9x2+19x2−2=>9x2+19x2=(3x−13x)2+2
Substituting 3x−13x=5, =>9x2+19x2=52+2=25+2=27
Squaring both sides,
(9x2+19x2)2=272
81x4+181x4+2×9x2×19x2=729
If 3x−13x=5, find :
(i) 9x2+19x2
(ii) 81x4+181x4