Given: 3x+2x=7
Squaring on both sides, we get
(3x+2x)2=72
(3x)2+2×3x×2x+(2x)2=49
9x2+12+4x2=49
∴9x2+4x2=49−12
9x2+4x2=37…(1)
Now, (3x−2x)2=(3x)2−2×3x×2x+(2x)2
=9x2−12+4x2
=9x2+4x2−12
=37−12 (from equation 1)
∴(3x−2x)2=25
3x−2x=±5…(2)
(i) When 3x−2x=5
Now, 9x2−4x2=(3x+2x)(3x−2x)
=(7)(5)
∴9x2−4x2=35
(ii) When 3x−2x=−5
Now, 9x2−4x2=(3x+2x)(3x−2x)
=(7)(−5)
∴9x2−4x2=−35
As, 35 is given in the option.
Hence, (b) is the correct option.